Activation of ERK1/2 by NADPH oxidase-originated reactive oxygen species mediates uric acid-induced mesangial cell proliferation.
نویسندگان
چکیده
Hyperuricemia is associated with kidney complications including glomerulosclerosis and mesangial cell (MC) proliferation by poorly understood mechanisms. The present study investigated the underlying mechanisms that mediate uric acid (UA)-induced MC proliferation. A rat MC line, HBZY-1, was treated with various concentrations of UA in the presence or absence of a specific extracellular-regulated protein kinase 1/2 (ERK1/2) inhibitor (U0126), apocynin. UA dose dependently stimulated MC proliferation as shown by increased DNA synthesis and number of cells in the S and G2 phases in parallel with the upregulation of cyclin A2 and cyclin D1. In addition, UA time dependently promoted MC proliferation and significantly increased phosphorylation of ERK1/2 but not c-Jun NH2-terminal kinase and p38 MAPK in MCs as assessed by immunoblotting. Inhibition of ERK1/2 signaling via U0126 markedly blocked UA-induced MC proliferation. More importantly, UA induced intracellular reactive oxygen species (ROS) production of MCs dose dependently, which was completely blocked by apocynin, a specific NADPH oxidase inhibitor. Toll-like receptor (TLR)2 and TLR4 signaling had no effect on NADPH-derived ROS and UA-induced MC proliferation. Interestingly, pretreatment with apocynin inhibited ERK1/2 activation, the upregulation of cyclin A2 and cyclin D1, and MC proliferation. In conclusion, UA-induced MC proliferation was mediated by NADPH/ROS/ERK1/2 signaling pathway. This novel finding not only reveals the mechanism of UA-induced MC cell proliferation but also provides some potential targets for future treatment of UA-related glomerular injury.
منابع مشابه
Corosolic acid inhibits the proliferation of glomerular mesangial cells and protects against diabetic renal damage
Diabetic nephropathy (DN) is one of the major complications of diabetes mellitus (DM). This study aimed to explore the effects of corosolic acid (CA) on the renal damage of DM and the mechanisms behind these effects. The renoprotective effect of CA was investigated in type 1 diabetic rats and db/db mice. The kidneys and glomerular mesangial cells (GMCs) were used to study the proliferation of G...
متن کاملAngiotensin II-induced ERK1/ERK2 activation and protein synthesis are redox-dependent in glomerular mesangial cells.
Angiotensin II (Ang II) stimulates hypertrophy of glomerular mesangial cells. The signalling mechanism by which Ang II exerts this effect is not precisely known. Downstream potential targets of Ang II are the extracellular-signal-regulated kinases 1 and 2 (ERK1/ERK2). We demonstrate that Ang II activates ERK1/ERK2 via the AT1 receptor. Arachidonic acid (AA) mimics the action of Ang II on ERK1/E...
متن کاملHigh glucose induces renal mesangial cell proliferation and fibronectin expression through JNK/NF-κB/NADPH oxidase/ROS pathway, which is inhibited by resveratrol.
Renal hypertrophy and extracellular matrix accumulation are early features of diabetic nephropathy. Hyperglycemia-induced oxidative stress is implicated in the etiology of diabetic nephropathy. Resveratrol has potent antioxidative and protective effects on diabetic nephropathy. We aimed to examine whether high glucose (HG)-induced NADPH oxidase activation and reactive oxygen species (ROS) produ...
متن کاملO 22: Reactive Oxygen Species and Epilepsy
Seizure activity has been proposed to result in the generation of reactive oxygen species (ROS), which then contribute to seizure-induced neuronal damage and eventually cell death. Although the mechanisms of seizure-induced ROS generation are unclear, mitochondria and cellular calcium overload have been proposed to have a crucial role. We aim to determine the sources of seizure-induced ROS and ...
متن کاملAdverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress.
Uric acid is considered a major antioxidant in human blood that may protect against aging and oxidative stress. Despite its proposed protective properties, elevated levels of uric acid are commonly associated with increased risk for cardiovascular disease and mortality. Furthermore, recent experimental studies suggest that uric acid may have a causal role in hypertension and metabolic syndrome....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 307 4 شماره
صفحات -
تاریخ انتشار 2014